
INDIVIDUELLE SOFTWAREINDIVIDUELLE SOFTWARE
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TODAY‘S JOURNEY

• The bad reputation of UI testing
– Reasons and explanations

• Test structure for scalable UI tests
• Examples



<rant>



Everyone hates UI tests



Slow feedback
More infrastructure

They‘re the top of
the pyramid!

They‘re flaky

Small changes
lead to big work
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feedback – for things
that we can wait for

Yes

Sometimes yes, 
often because of

bad design or
wrong usageThey‘re still in the

pyramid.
User focus is
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1. Same for
development

2. Only if you
design them

badly



TO BOIL IT DOWN TO TWO POINTS…

• UI tests are often used to test things that shouldn‘t be
tested via the UI

• And they are often written badly. 
Very badly…



Just because they’re maybe a bit more difficult 
– and not the favourite domain of developers –
doesn’t mean that they are not potentially valid

</rant>



UI TESTING TOOLS ONLY THINK OF ONE THING…

Technically addressing UI 
components in an application

They give no structural support for
test design

In fact, they help you to make a mess often…



“Don‘t use capture-replay. ‘Tis the devil‘s work“

- Alex Schladebeck, repeatedly from ~2006 AD



WHAT USUALLY HAPPENS

Tool-API

Test Case

check

click

input

Direct tool API calls
to create workflow

Missing technical and logical
layers

- Redundancies
- Unreadable
- Not conducive to team work



THERE ARE WAYS OF AVOIDING THIS…

In software engineering, a software design pattern is a general reusable solution 
to a commonly occurring problem within a given context in software design.

It is not a finished design that can be transformed directly into source or machine code.
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HOW TESTS SHOULD BE STRUCTURED

Tool-API

Test Case

Technical Keywords

Functional atomic actions

Functional workflows
Functional
tester

Technical 
Tester / dev

Test manager
Customer



EXAMPLE: GOOD LAYERING

Technical keyword

Functional atomic
action

Functional workflow

Test Case

Replace text [TEXT]

- Click

- Select all

- Send keys

Enter customer name [NAME]

- Replace text [TEXT]

Fill out customer form [CUSTOMER_KEY]

- Enter customer name [NAME]

- Enter customer street address [ADDRESS]

- Enter postcode [POSTCODE]

TC CUS 001: Create new customer

- Check customer does not exist [CUSTOMER_KEY]

- Create new customer [CUSTOMER_KEY]

- Check customer exists [CUSTOMER_KEY]

Functional workflow
Create new customer [CUSTOMER_KEY]

- Open new customer dialog

- Fill out customer form [CUSTOMER_KEY]

- Click Save



EXAMPLE: SPLITTING INTO CONTEXTS

Tool-API

Test Case

Technical Keywords

Actions

Workflows

Actions

Workflows

Actions

Workflows

Context 1 Context 2 Context 3

Context: functionally
connected application
area, e.g. Master Data



YOU MAY KNOW SIMILAR APPROACHES

• Page Object Pattern
– Services and Implementation separatedmore layers
– Focus on page  focus on functional context
– Assertions checks
– Strong user focus

• Gojko‘s 3 layers  more layers

https://github.com/SeleniumHQ/selenium/wiki/PageObjects
https://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2/

https://github.com/SeleniumHQ/selenium/wiki/PageObjects
https://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2/


BAD EXAMPLE 1

• No abstraction levels
• Redundant object location
• Technical operations at highest level
• Hard coded data



REAL LIFE BAD EXAMPLE 1



LAYERING EXAMPLES



LAYERING EXAMPLES

• Clear levels
• Data objects
• VAV pattern



A LOOK AT THE LOWER LAYERS



A LOOK AT THE LOWER LAYERS



DIFFERENT TOOLS AND DIFFERENT APIS



MORE PATTERNS: VAV

• Verify – Act – Verify 
– Because otherwise you just don’t know



MORE PATTERNS: DATA OBJECTS

• One row per required data set
• Key and column are encapsulated in actions



MORE PATTERNS: FORM PATTERN

• Fill in variable amounts of fields with one workflow



THERE ARE MORE…

• Responsibility assignment
• Fresh / shared setup
• …



POST-EXAMPLE DISCLAIMER

This works all the time like perfect unicorn rainbow poop! *

* In the contexts we have used these things in so far, they have been very useful to us
and have saved us a lot of time and hair-pulling out. 



EXTRA DISCLAIMER

“These are patterns we know from software development!“
- people

“Then train developers and testers to use them
so that they write good UI tests”

- me



THINGS TO TAKE AWAY

• You don’t have to hate your UI tests
– You just have to do them right

• Don’t reinvent the wheel completely, but remember to 
expand and extend it
– And re-evaluate for new contexts

• Use these patterns to get developers and testers of all 
flavours on board with UI automation


