
INDIVIDUELLE SOFTWAREINDIVIDUELLE SOFTWARE

WILL YOUR TESTS STAND THE TEST OF TIME?
PATTERNS FOR AUTOMATED UI TESTS

ALEX SCHLADEBECK @ALEX_SCHL



INTRODUCTIONS

• I am…
– A tester, head of testing, a product owner
– A geek 

• Bredex is
– A software development company
– With a strong focus on quality

• Own open source tool
• Multi-tool strategy
• Agile testing
• Scalable test automation

Training

Development

Testing



INTRODUCTIONS

• I am…
– A tester, head of testing, a product owner
– A geek 

• Bredex is … hiring 
– A software development company
– With a strong focus on quality

• Own open source tool
• Multi-tool strategy
• Agile testing
• Scalable test automation

Training

Development

Testing



TODAY‘S JOURNEY

• The bad reputation of UI testing
– Reasons and explanations

• Test structure for scalable UI tests
• Examples



<rant>



Everyone hates UI tests



Slow feedback
More infrastructure

They‘re the top of
the pyramid!

They‘re flaky

Small changes
lead to big work



Slow feedback
More infrastructure

They‘re the top of
the pyramid!

They‘re flaky

Small changes
lead to big work

Different level of
feedback – for things
that we can wait for

Yes

Sometimes yes, 
often because of

bad design or
wrong usageThey‘re still in the

pyramid.
User focus is

valid.
And….context!

1. Same for
development

2. Only if you
design them

badly



TO BOIL IT DOWN TO TWO POINTS…

• UI tests are often used to test things that shouldn‘t be
tested via the UI

• And they are often written badly. 
Very badly…



Just because they’re maybe a bit more difficult 
– and not the favourite domain of developers –
doesn’t mean that they are not potentially valid

</rant>



UI TESTING TOOLS ONLY THINK OF ONE THING…

Technically addressing UI 
components in an application

They give no structural support for
test design

In fact, they help you to make a mess often…



“Don‘t use capture-replay. ‘Tis the devil‘s work“

- Alex Schladebeck, repeatedly from ~2006 AD



WHAT USUALLY HAPPENS

Tool-API

Test Case

check

click

input

Direct tool API calls
to create workflow

Missing technical and logical
layers

- Redundancies
- Unreadable
- Not conducive to team work



THERE ARE WAYS OF AVOIDING THIS…

In software engineering, a software design pattern is a general reusable solution 
to a commonly occurring problem within a given context in software design.

It is not a finished design that can be transformed directly into source or machine code.



HOW TESTS SHOULD BE STRUCTURED

Tool-API

Test Case

Technical Keywords

Functional atomic actions

Functional workflows



HOW TESTS SHOULD BE STRUCTURED

Tool-API

Test Case

Technical Keywords

Functional atomic actions

Functional workflows
May be split into
internals (private) 
and services (public)



HOW TESTS SHOULD BE STRUCTURED

Tool-API

Test Case

Technical Keywords

Functional atomic actions

Functional workflows
Functional
tester

Technical 
Tester / dev

Test manager
Customer



EXAMPLE: GOOD LAYERING

Technical keyword

Functional atomic
action

Functional workflow

Test Case

Replace text [TEXT]

- Click

- Select all

- Send keys

Enter customer name [NAME]

- Replace text [TEXT]

Fill out customer form [CUSTOMER_KEY]

- Enter customer name [NAME]

- Enter customer street address [ADDRESS]

- Enter postcode [POSTCODE]

TC CUS 001: Create new customer

- Check customer does not exist [CUSTOMER_KEY]

- Create new customer [CUSTOMER_KEY]

- Check customer exists [CUSTOMER_KEY]

Functional workflow
Create new customer [CUSTOMER_KEY]

- Open new customer dialog

- Fill out customer form [CUSTOMER_KEY]

- Click Save



EXAMPLE: SPLITTING INTO CONTEXTS

Tool-API

Test Case

Technical Keywords

Actions

Workflows

Actions

Workflows

Actions

Workflows

Context 1 Context 2 Context 3

Context: functionally
connected application
area, e.g. Master Data



YOU MAY KNOW SIMILAR APPROACHES

• Page Object Pattern
– Services and Implementation separatedmore layers
– Focus on page  focus on functional context
– Assertions checks
– Strong user focus

• Gojko‘s 3 layers  more layers

https://github.com/SeleniumHQ/selenium/wiki/PageObjects
https://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2/

https://github.com/SeleniumHQ/selenium/wiki/PageObjects
https://gojko.net/2010/04/13/how-to-implement-ui-testing-without-shooting-yourself-in-the-foot-2/


BAD EXAMPLE 1

• No abstraction levels
• Redundant object location
• Technical operations at highest level
• Hard coded data



REAL LIFE BAD EXAMPLE 1



LAYERING EXAMPLES



LAYERING EXAMPLES

• Clear levels
• Data objects
• VAV pattern



A LOOK AT THE LOWER LAYERS



A LOOK AT THE LOWER LAYERS



DIFFERENT TOOLS AND DIFFERENT APIS



MORE PATTERNS: VAV

• Verify – Act – Verify 
– Because otherwise you just don’t know



MORE PATTERNS: DATA OBJECTS

• One row per required data set
• Key and column are encapsulated in actions



MORE PATTERNS: FORM PATTERN

• Fill in variable amounts of fields with one workflow



THERE ARE MORE…

• Responsibility assignment
• Fresh / shared setup
• …



POST-EXAMPLE DISCLAIMER

This works all the time like perfect unicorn rainbow poop! *

* In the contexts we have used these things in so far, they have been very useful to us
and have saved us a lot of time and hair-pulling out. 



EXTRA DISCLAIMER

“These are patterns we know from software development!“
- people

“Then train developers and testers to use them
so that they write good UI tests”

- me



THINGS TO TAKE AWAY

• You don’t have to hate your UI tests
– You just have to do them right

• Don’t reinvent the wheel completely, but remember to 
expand and extend it
– And re-evaluate for new contexts

• Use these patterns to get developers and testers of all 
flavours on board with UI automation


