
@EuroTestingConf @a_bangser & @lisacrispin

While we’re waiting to start...

What unexpected issues related to pipelines, continuous
integration, and continuous delivery have you found?

Please write yours down, one per sticky note, and put on
our Surprises wall chart.

We’ll try to address them during the workshop.

@EuroTestingConf @a_bangser & @lisacrispin

Using Pipelines to Bring
Product to Production

Abby Bangser and Lisa Crispin
European Testing Conference 2018

@EuroTestingConf @a_bangser & @lisacrispin

@EuroTestingConf @a_bangser & @lisacrispin

Why pipelines?

Some statements we have heard about pipelines:

● Pipelines are “technical”, not business facing, they deal
with automation and code

● “DevOps” teams / people are in charge of pipelines
● Pipelines are simple and execute the testing, they do not

need testing themselves

@EuroTestingConf @a_bangser & @lisacrispin

● Teams benefit from cross role pipelines engagement
● Value streams rely on ability to identify and fix bottlenecks
● As a key to risk mitigation, pipelines require analysis and

testing to validate

Instead, we prefer these statements about pipelines

@EuroTestingConf @a_bangser & @lisacrispin

Learning intentions

● Explore continuous integration and continuous delivery
concepts

● Better define what we can expect from pipelines

● Learn vocabulary to engage with
pipelines as a practice within your team

● Hands on experience layering in
feedback loops

@EuroTestingConf @a_bangser & @lisacrispin

Clear up some terminology

● Make sure we share a common language across the team

● Avoid common misunderstandings

○ Throughput and latency
○ Continuous Integration
○ Deployment Pipeline
○ Continuous Delivery
○ Continuous Deployment

@EuroTestingConf @a_bangser & @lisacrispin

Latency is the amount of time
to get through a pipeline line
including any introduced delays

Throughput is
the number and
size of items that
can be sent at
any one time
through a pipeline

@EuroTestingConf @a_bangser & @lisacrispin

How throughput and latency actually manifest

If a pipeline has HIGH latency, people will
attempt to overcome these challenges by
increase BATCH SIZE of throughput.

A pipeline with LOW latency, will encourage
people to decrease BATCH SIZE and increase
FREQUENCY of throughput.

@EuroTestingConf @a_bangser & @lisacrispin

Continuous Integration (CI)

● Integrate code into a shared repository multiple times per
day

● All code is integrated onto the same branch multiple times
per day

● Typically the start of a pipeline
● Each check-in can be verified by an automated build with

automated regression tests

@EuroTestingConf @a_bangser & @lisacrispin

Deployment pipeline
● Break the build into stages to speed up feedback
● Each stage takes extra time & provides more confidence
● Early stages can find most problems -> faster feedback
● Later stages probe more thoroughly
● Automated deployment pipelines are central to continuous

delivery

From A Practical Guide to Testing
in DevOps, Katrina Clokie

@EuroTestingConf @a_bangser & @lisacrispin

Continuous Delivery (CD)
● Ability to get many types of changes into production

safely, quickly and sustainably
○ eg. new features, configuration changes, bug fixes experiments

● Heavily benefits from automated testing but is not an
explicit dependency

● Each commit is independently verified as a deployable
release candidate

● A deployable release candidate is always available

@EuroTestingConf @a_bangser & @lisacrispin

Compile &
Unit Testing

Static
Analysis

Integration
Testing

GUI &
End to End
Testing

Exploratory
Testing

User
Acceptance
Testing
(UAT)

Perf Testing

Penetration
Testing

Deploy to
Production

Deploy to
QA Env

Deploy to
Staging
Env

Deploy to
Stress Env

Deploy to
Security
Env

Example Continuous Delivery

@EuroTestingConf @a_bangser & @lisacrispin

Continuous Deployment (CD …also)
● Each commit is independently verified as a deployable

release candidate and given it passes all verifications is
automatically deployed to production

● Again, heavily benefits from automated testing and
Continuous Delivery environment, but does not actually
require either

● Deployments occur on every successfully verified commit.
Often many a day.

@EuroTestingConf @a_bangser & @lisacrispin

Compile &
Unit Testing

Static
Analysis

Integration
Testing

GUI &
End to End
Testing

Exploratory
Testing

User
Acceptance
Testing
(UAT)

Perf Testing

Penetration
Testing

Deploy to
Production

Deploy to
QA Env

Deploy to
Staging
Env

Deploy to
Stress Env

Deploy to
Security
Env

Example Continuous Deployment

@EuroTestingConf @a_bangser & @lisacrispin

Activity time

@EuroTestingConf @a_bangser & @lisacrispin

code change is committed a production release

In your table groups, each person select a predetermined
step and in turn (using stickies for notes)
● Place your step in order on the group’s chart
● Identify what value and information the step can provide in its outputs

Building the first layer of a pipeline
C

od
e

C
he

ck
-in

S
ta

ge
 1

S
ta

ge
 2

S
ta

ge
 ..

.

P
ro

d
D

ep
lo

y

Value of
stage

Value of
stage

Value of
stage

Value of
stage

Value of
stage

@EuroTestingConf @a_bangser & @lisacrispin

In your table groups, each person select a predetermined
step and in turn:
● Place your step in order on the group’s chart
● Identify what value and information the step can provide in its outputs
● Add in who on the team benefits from that information
● Add to or change the the drawing to reflect your answers to:

○ Could it be speeded up with parallelization?
○ Will the step be started automatically? Manually? Based on the state of another step?

Listens to
Auto Trigger Auto Triggers Manual Trigger

C
od

e
C

he
ck

-in

S
ta

ge
 1

S
ta

ge
 2

S
ta

ge
 ..

.

P
ro

d
D

ep
lo

y

Value of
stage

Value of
stage

Value of
stage

@EuroTestingConf @a_bangser & @lisacrispin

Some vocabulary to go with these ideas

Stage 1
Finally {
 Start Stage 2
}

Stage 2 Stage 1 Stage 2
Listen...
 Stage 1
 successful?

Push vs Pull -
 Asking a successful stage Giving a stage prerequisites to poll
 to kick off the next is pushing (check periodically) for or to listen to

 a stage is pulling

Something to think about: Push can fail a stage for reasons associated with the
next stage. Pull can silently not work correctly if checking the wrong thing.

@EuroTestingConf @a_bangser & @lisacrispin

Some vocabulary to go with these ideas

“Fan in” Dependency Management -

Something to think about: if only
one of the Prerequisite stages passes,
do you run the shared step?

U
ni

t
te

st
in

g

U
I T

es
tin

g
In

te
gr

at
io

n
Te

st
in

g

D
ep

lo
y

to

Te
st

 E
nv

@EuroTestingConf @a_bangser & @lisacrispin

Let’s dig into why we chose those stages for our pipeline.

Let’s explore the feedback loops that we have created

In your table groups, each person select a pipeline step and
in turn share:
● How long is it until feedback (pass or fail etc) is provided from each stage

● Add details about who might be alerted and how an alert may be
communicated or displayed

Building a second layer of value for a pipeline

@EuroTestingConf @a_bangser & @lisacrispin

Some vocabulary to go with these ideas
“Stop the line” mentality - from Toyota
● Every employee on the assembly line has a responsibility

to “stop the line” when they see a defect
● Pushing the “big red button” is an investment that leads to

improvements:
○ Knowledge sharing
○ Cost, speed
○ Reliability

@EuroTestingConf @a_bangser & @lisacrispin

Some vocabulary to go with these ideas

Work
identified

Work
started

Work
completed

Lead Time

Process / Cycle Time

“The First Way” - Improving the fast left-to-right flow of work.
Encourages focus on breaking constraints which includes
finding the right constraints to break first.
Note: This is a part of the Three Ways as introduced in The DevOps Handbook.

@EuroTestingConf @a_bangser & @lisacrispin

ExaƌƩlƄ
HeƔrƢƒƭicƒ

How we can test a pipeline and its infrastructure

UsaƁƈƥƢtƘ

AcƓiƎƧs ƨƍ
suƂƜƄsƒƟƮl
ruƍƬ

AcƂeƬs ƓƎ
arƓƈƟƚcƓƬ

@EuroTestingConf @a_bangser & @lisacrispin

Design your experiment!
How will you use or change your team’s pipeline?

● Set a SMART goal - how will you
measure whether your experiment is
working

● It’s ok to fail! Focus on learning
● Pair up to encourage each other, report

on your outcomes

@EuroTestingConf @a_bangser & @lisacrispin

Feedback for a chocolate :)

@EuroTestingConf @a_bangser & @lisacrispin

@EuroTestingConf @a_bangser & @lisacrispin

Thank you!
Let’s keep the conversation going...

@a_bangser

@LisaCrispin

@EuroTestingConf @a_bangser & @lisacrispin

Glossary: A - C
Blue/green deployment. Blue-green deployment is a technique that reduces downtime and risk by running two identical production environments called Blue
and Green. At any given time, one of the environments serves all production traffic, while the other is idle or accessible only by internal users for testing
purposes. At deployment time, the new version can be deployed to the “idle” environment, tested, and then the router is switched to send all production traffic
to the new production environment.

Canary release. A technique to reduce the risk of introducing a new software version in production by slowly rolling out the change to a small subset of users
before rolling it out to the entire infrastructure and making it available to everybody. (Danilo Sato)

Continuous delivery (CD). The ability to get changes of all types—including new features, configuration changes, bug fixes and experiments—into production, or
into the hands of users, safely and quickly in a sustainable way. (Jez Humble)

Continuous deployment. Every change goes through the pipeline and automatically gets put into production, resulting in many production deployments every
day. (Martin Fowler)

Continuous integration (CI). A development practice that requires developers to integrate code into a shared repository several times a day. Each check-in is
then verified by an automated build, allowing teams to detect problems early. (Thoughtworks) Production deployments are frequent, but not every change
results in automatic production deployment.

@EuroTestingConf @a_bangser & @lisacrispin

Glossary: D - M
Dark launch. The practice of deploying the very first version of a service into its production environment, well before release, so that you can soak test it and find
any bugs before you make its functionality available to users. (Jez Humble)

DevOps. The term was coined in 2009 from “Development” and “Operations”, but the concept goes much further back. Developers, testers, operations staff and
others collaborate to build and maintain build, test and production infrastructure that enables them to improve their customers’ lives.

Feature flag (or feature toggle). A configuration option that defines whether or not a feature within your software should be executed. You might also hear this
concept called feature flags, flippers, switches, feature bits, or latent code. (Katrina Clokie)

Latency is the amount of time to get through a pipeline line including any introduced delays.

Logging. Log files record transactional and status information, along with errors and warnings that are generated by unexpected activity. (Katrina Clokie) They
provide detailed, low-level information to diagnose the problems.

Monitoring. The process of maintaining surveillance over the existence and magnitude of state change and data flow in a system. Monitoring aims to identify
faults and assist in their subsequent elimination. (Katrina Clokie)

@EuroTestingConf @a_bangser & @lisacrispin

Glossary: O - Z
Observability. The instrumentation you need to understand what’s happening in your software is available. Observability focuses on the development of the
application, and the rich instrumentation you need, not to poll and monitor it for thresholds or defined health checks, but to ask any arbitrary question about
how the software works. (Charity Majors)

Pipeline. A repeatable, recorded communication of automated feedback. It includes test and deployment scripts, from development and operations respectively,
along with a pipeline to illustrate the process by which the scripts run. Also known as automated deployment pipeline. (Katrina Clokie)

Staged rollout. A canary release with a different focus. Instead of creating a canary by limiting changes to infrastructure, the rollout intentionally limits the
number of users with access to the new code. (Katrina Clokie)

Throughput is the number and size of items that can be sent at any one time through a pipeline.

@EuroTestingConf @a_bangser & @lisacrispin

Reading list: Internet resources
“Architecting for Continuous Delivery”, Vishal Naik,

https://www.thoughtworks.com/insights/blog/architecting-continuous-delivery “...the goal of CD is to be able to

release software frequently, and reliably, in a frictionless manner.”

“Continuous Testing”, Jez Humble, https://continuousdelivery.com/foundations/test-automation/ “Get started by

building a skeleton deployment pipeline—create a single unit test, a single acceptance test, an automated

deployment script that stands up an exploratory testing environment, and thread them together. Then increase

test coverage and extend your deployment pipeline as your product or service evolves.” Also from Jez:

https://continuousdelivery.com/

“Incremental Steps to Continuous Releases”, Maaret Pyhäjärvi ,

http://visible-quality.blogspot.com/2017/05/incremental-steps-to-continuous-releases.html “...this fundamentally

changes the testing I do. It enables me to test each change, isolate it and see its impacts all the way through

production.”

https://www.google.com/url?q=https://www.thoughtworks.com/insights/blog/architecting-continuous-delivery&sa=D&ust=1519129469733000&usg=AFQjCNH6a2MbILx2ZAN3EY6H7sc7njQHcw
https://www.google.com/url?q=https://continuousdelivery.com/foundations/test-automation/&sa=D&ust=1519129469733000&usg=AFQjCNGF_RdP2wF--deZv4DAivENsfoCLg
https://www.google.com/url?q=https://continuousdelivery.com/&sa=D&ust=1519129469734000&usg=AFQjCNF8g3S-881mBjkncBLvrjObvGuXeg
https://www.google.com/url?q=http://visible-quality.blogspot.com/2017/05/incremental-steps-to-continuous-releases.html&sa=D&ust=1519129469734000&usg=AFQjCNEnnRLARrlatNYxx09wXujvSjjrOA

@EuroTestingConf @a_bangser & @lisacrispin

Reading list: Internet resources (continued)
“Continuous Testing in DevOps”, Dan Ashby, https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/

“For me, testing fits at each and every single point in this (DevOps) model.”

“What Happens to Testing in Continuous Delivery”, Fanny Pittack,

https://www.slideshare.net/traumstoff/what-happens-to-testing-in-continuous-delivery

“Testing in Production: Rethinking the Conventional Deployment Pipeline”, Jacob Winch,

https://www.theguardian.com/info/developer-blog/2016/dec/20/testing-in-production-rethinking-the-convention

al-deployment-pipeline

https://dojo.ministryoftesting.com/lessons/the-tester-s-survival-guide-to-joining-a-continuous-delivery-project-am

y-phillips (behind the paywall for the Dojo – but worth paying for!)

https://dojo.ministryoftesting.com/lessons/human-pipeline-optimize-your-feedback?s_id=4472 (behind the

paywall for the Dojo – but worth paying for!)

https://www.google.com/url?q=https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/&sa=D&ust=1519129469781000&usg=AFQjCNGjaOGSXVKoPstwRrgfS1HjHoqtiw
https://www.google.com/url?q=https://www.slideshare.net/traumstoff/what-happens-to-testing-in-continuous-delivery&sa=D&ust=1519129469782000&usg=AFQjCNGcbZVqOnoXTGW-QXGzSU1jAjVOGA
https://www.google.com/url?q=https://www.theguardian.com/info/developer-blog/2016/dec/20/testing-in-production-rethinking-the-conventional-deployment-pipeline&sa=D&ust=1519129469783000&usg=AFQjCNG5gu1cOGKh2GMQSSzAqabMnYrnNA
https://www.google.com/url?q=https://www.theguardian.com/info/developer-blog/2016/dec/20/testing-in-production-rethinking-the-conventional-deployment-pipeline&sa=D&ust=1519129469783000&usg=AFQjCNG5gu1cOGKh2GMQSSzAqabMnYrnNA
https://www.google.com/url?q=https://dojo.ministryoftesting.com/lessons/the-tester-s-survival-guide-to-joining-a-continuous-delivery-project-amy-phillips&sa=D&ust=1519129469784000&usg=AFQjCNE-NOuTnQ16poO-ywx5ZKLMZSREfw
https://www.google.com/url?q=https://dojo.ministryoftesting.com/lessons/the-tester-s-survival-guide-to-joining-a-continuous-delivery-project-amy-phillips&sa=D&ust=1519129469784000&usg=AFQjCNE-NOuTnQ16poO-ywx5ZKLMZSREfw
https://www.google.com/url?q=https://dojo.ministryoftesting.com/lessons/human-pipeline-optimize-your-feedback?s_id%3D4472&sa=D&ust=1519129469785000&usg=AFQjCNEoZsOcvbfUuGu9D_RwGoAJvI5XTg

@EuroTestingConf @a_bangser & @lisacrispin

Reading list: Books
Humble, Jez, and David Farley, Continuous Delivery: Reliable Software Releases through Build, Test and Deployment

Automation, Addison-Wesley, 2010.

Clokie, Katrina, A Practical Guide to Testing in DevOps, LeanPub, 2017.

Kim, Humble, Debois, Willis, The DevOps Handbook, IT Revolution Press, 2016.

@EuroTestingConf @a_bangser & @lisacrispin

Reading list: Continuous Integration Tools
Circle CI: https://circleci.com/docs/2.0/workflows/ (docs)

Concourse: concourse.ci/introduction.html (docs) & ci.concourse.ci/teams/main/pipelines/main?groups=develop (example)

Jenkins: https://ci.jenkins.io/job/Core/ (example) & https://jenkins.io/doc/tutorials/ (docs / tutorial)

Jenkins with BlueOcean pipelines: https://jenkins.io/projects/blueocean/ (docs)

https://www.google.com/url?q=https://circleci.com/docs/2.0/workflows/&sa=D&ust=1519129469836000&usg=AFQjCNFmuaa4UxL2anGyzLk-uLStmoDoIg
https://www.google.com/url?q=https://concourse.ci/introduction.html&sa=D&ust=1519129469837000&usg=AFQjCNFMMicLCBbso_DqgpjsIRcjzZ_Z2Q
https://www.google.com/url?q=https://ci.concourse.ci/teams/main/pipelines/main?groups%3Ddevelop&sa=D&ust=1519129469837000&usg=AFQjCNGsrBbVpzwsGOBh7TuL2ANziqrNsg
https://www.google.com/url?q=https://ci.jenkins.io/job/Core/&sa=D&ust=1519129469837000&usg=AFQjCNFU4fT_uSOiQ5aqlJAtQniaF5__zQ
https://www.google.com/url?q=https://jenkins.io/doc/tutorials/&sa=D&ust=1519129469838000&usg=AFQjCNE_InCAf0ET8HxvxDBmf-81bIkc4g
https://www.google.com/url?q=https://jenkins.io/projects/blueocean/&sa=D&ust=1519129469838000&usg=AFQjCNG3ob2pMZijmi1KzwSyJxgUFgu8_Q

@EuroTestingConf @a_bangser & @lisacrispin

An often underutilised capabilities of pipelines is how to build auditability into the
delivery process.

For example:
- Traceability of who makes changes (commit messages are made in a certain format and must match credentials

committing)
- Segregation of duties on who can push to prod (done through authorisation)
- Proof of code quality (through static analysis and/or automated test packs)
- Example - API doc auto generated
- Commit messages - who did the commit, who signed off on it
- Living doc - can be shown to auditors
- Who needs the outputs
- How to create outputs
- “Build once deploy everywhere”? (for trust of outputs)

Identifying additional layers of value for a pipeline

